Image token consumption varies by model and resolution, typically ranging from 1,000 to 2,500 tokens per image. But can be higher for higher resolution images. Understanding token usage helps you estimate costs and optimize your applications.

Token count depends on both the model’s tokenization method and your image’s resolution. Higher resolution images generally consume more tokens.

Calculating tokens for your images

You can determine exact token usage by processing your images through the model’s tokenizer. For instance, for Qwen2.5 VL, you can use the following code:

1

Install dependencies

pip install torch torchvision transformers pillow
2

Tokenize your image

Tokenizing your image
import requests
from PIL import Image
from transformers import AutoProcessor
import os

# Your image source - can be URL or local path
IMAGE_URL_OR_PATH = "https://images.unsplash.com/photo-1519125323398-675f0ddb6308"

def load_image(source):
    """Load image from URL or local file path"""
    if source.startswith(('http://', 'https://')):
        print(f"Downloading image from URL: {source}")
        response = requests.get(source)
        response.raise_for_status()
        return Image.open(requests.get(source, stream=True).raw)
    else:
        print(f"Loading image from path: {source}")
        if not os.path.exists(source):
            raise FileNotFoundError(f"Image file not found: {source}")
        return Image.open(source)

def count_image_tokens(image):
    """Count how many tokens an image takes using Qwen 2.5 VL processor"""
    processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-3B-Instruct")
    
    messages = [
        {
            "role": "user",
            "content": [
                {"type": "image", "image": image},
                {"type": "text", "text": "What's in this image?"},
            ],
        }
    ]
    
    text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    inputs = processor(text=text, images=[image], return_tensors="pt")
    input_ids = inputs["input_ids"][0]
    
    # Count the image pad tokens (151655 is Qwen2.5 VL's image token ID)
    image_tokens = (input_ids == 151655).sum().item()
    
    return image_tokens, input_ids

def main():
    import sys
    
    image_source = sys.argv[1] if len(sys.argv) > 1 else IMAGE_URL_OR_PATH
    
    print(f"Processing image: {image_source}")
    image = load_image(image_source)
    print(f"Image size: {image.size}")
    print(f"Image mode: {image.mode}")
    
    print("\nCalculating tokens...")
    image_tokens, input_ids = count_image_tokens(image)
    
    print(f"Total tokens: {len(input_ids)}")
    print(f"Image tokens: {image_tokens}")
    print(f"Text tokens: {len(input_ids) - image_tokens}")
    
if __name__ == "__main__":
    main()
Usage
# Calculate tokens for an image URL
python token_calculator.py "https://example.com/image.jpg"

# Calculate tokens for a local image
python token_calculator.py "path/to/your/image.png"